Copied to
clipboard

G = C426D9order 288 = 25·32

5th semidirect product of C42 and D9 acting via D9/C9=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C41D36, C364D4, C426D9, C12.38D12, (C4×C36)⋊4C2, (C2×D36)⋊1C2, C91(C41D4), (C4×C12).6S3, C18.3(C2×D4), C2.5(C2×D36), C3.(C4⋊D12), C6.32(C2×D12), (C2×C4).78D18, (C2×C12).369D6, (C2×C18).15C23, (C2×C36).87C22, (C22×D9).1C22, C22.36(C22×D9), (C2×C6).172(C22×S3), SmallGroup(288,84)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C426D9
C1C3C9C18C2×C18C22×D9C2×D36 — C426D9
C9C2×C18 — C426D9
C1C22C42

Generators and relations for C426D9
 G = < a,b,c | a36=b4=c2=1, ab=ba, cac=a-1, cbc=b-1 >

Subgroups: 1020 in 162 conjugacy classes, 56 normal (10 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C9, C12, D6, C2×C6, C42, C2×D4, D9, C18, D12, C2×C12, C22×S3, C41D4, C36, D18, C2×C18, C4×C12, C2×D12, D36, C2×C36, C22×D9, C4⋊D12, C4×C36, C2×D36, C426D9
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, D12, C22×S3, C41D4, D18, C2×D12, D36, C22×D9, C4⋊D12, C2×D36, C426D9

Smallest permutation representation of C426D9
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 93 48 118)(2 94 49 119)(3 95 50 120)(4 96 51 121)(5 97 52 122)(6 98 53 123)(7 99 54 124)(8 100 55 125)(9 101 56 126)(10 102 57 127)(11 103 58 128)(12 104 59 129)(13 105 60 130)(14 106 61 131)(15 107 62 132)(16 108 63 133)(17 73 64 134)(18 74 65 135)(19 75 66 136)(20 76 67 137)(21 77 68 138)(22 78 69 139)(23 79 70 140)(24 80 71 141)(25 81 72 142)(26 82 37 143)(27 83 38 144)(28 84 39 109)(29 85 40 110)(30 86 41 111)(31 87 42 112)(32 88 43 113)(33 89 44 114)(34 90 45 115)(35 91 46 116)(36 92 47 117)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 42)(8 41)(9 40)(10 39)(11 38)(12 37)(13 72)(14 71)(15 70)(16 69)(17 68)(18 67)(19 66)(20 65)(21 64)(22 63)(23 62)(24 61)(25 60)(26 59)(27 58)(28 57)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(73 77)(74 76)(78 108)(79 107)(80 106)(81 105)(82 104)(83 103)(84 102)(85 101)(86 100)(87 99)(88 98)(89 97)(90 96)(91 95)(92 94)(109 127)(110 126)(111 125)(112 124)(113 123)(114 122)(115 121)(116 120)(117 119)(128 144)(129 143)(130 142)(131 141)(132 140)(133 139)(134 138)(135 137)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,93,48,118)(2,94,49,119)(3,95,50,120)(4,96,51,121)(5,97,52,122)(6,98,53,123)(7,99,54,124)(8,100,55,125)(9,101,56,126)(10,102,57,127)(11,103,58,128)(12,104,59,129)(13,105,60,130)(14,106,61,131)(15,107,62,132)(16,108,63,133)(17,73,64,134)(18,74,65,135)(19,75,66,136)(20,76,67,137)(21,77,68,138)(22,78,69,139)(23,79,70,140)(24,80,71,141)(25,81,72,142)(26,82,37,143)(27,83,38,144)(28,84,39,109)(29,85,40,110)(30,86,41,111)(31,87,42,112)(32,88,43,113)(33,89,44,114)(34,90,45,115)(35,91,46,116)(36,92,47,117), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(73,77)(74,76)(78,108)(79,107)(80,106)(81,105)(82,104)(83,103)(84,102)(85,101)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(109,127)(110,126)(111,125)(112,124)(113,123)(114,122)(115,121)(116,120)(117,119)(128,144)(129,143)(130,142)(131,141)(132,140)(133,139)(134,138)(135,137)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,93,48,118)(2,94,49,119)(3,95,50,120)(4,96,51,121)(5,97,52,122)(6,98,53,123)(7,99,54,124)(8,100,55,125)(9,101,56,126)(10,102,57,127)(11,103,58,128)(12,104,59,129)(13,105,60,130)(14,106,61,131)(15,107,62,132)(16,108,63,133)(17,73,64,134)(18,74,65,135)(19,75,66,136)(20,76,67,137)(21,77,68,138)(22,78,69,139)(23,79,70,140)(24,80,71,141)(25,81,72,142)(26,82,37,143)(27,83,38,144)(28,84,39,109)(29,85,40,110)(30,86,41,111)(31,87,42,112)(32,88,43,113)(33,89,44,114)(34,90,45,115)(35,91,46,116)(36,92,47,117), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(73,77)(74,76)(78,108)(79,107)(80,106)(81,105)(82,104)(83,103)(84,102)(85,101)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(109,127)(110,126)(111,125)(112,124)(113,123)(114,122)(115,121)(116,120)(117,119)(128,144)(129,143)(130,142)(131,141)(132,140)(133,139)(134,138)(135,137) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,93,48,118),(2,94,49,119),(3,95,50,120),(4,96,51,121),(5,97,52,122),(6,98,53,123),(7,99,54,124),(8,100,55,125),(9,101,56,126),(10,102,57,127),(11,103,58,128),(12,104,59,129),(13,105,60,130),(14,106,61,131),(15,107,62,132),(16,108,63,133),(17,73,64,134),(18,74,65,135),(19,75,66,136),(20,76,67,137),(21,77,68,138),(22,78,69,139),(23,79,70,140),(24,80,71,141),(25,81,72,142),(26,82,37,143),(27,83,38,144),(28,84,39,109),(29,85,40,110),(30,86,41,111),(31,87,42,112),(32,88,43,113),(33,89,44,114),(34,90,45,115),(35,91,46,116),(36,92,47,117)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,42),(8,41),(9,40),(10,39),(11,38),(12,37),(13,72),(14,71),(15,70),(16,69),(17,68),(18,67),(19,66),(20,65),(21,64),(22,63),(23,62),(24,61),(25,60),(26,59),(27,58),(28,57),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(73,77),(74,76),(78,108),(79,107),(80,106),(81,105),(82,104),(83,103),(84,102),(85,101),(86,100),(87,99),(88,98),(89,97),(90,96),(91,95),(92,94),(109,127),(110,126),(111,125),(112,124),(113,123),(114,122),(115,121),(116,120),(117,119),(128,144),(129,143),(130,142),(131,141),(132,140),(133,139),(134,138),(135,137)]])

78 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A···4F6A6B6C9A9B9C12A···12L18A···18I36A···36AJ
order1222222234···466699912···1218···1836···36
size11113636363622···22222222···22···22···2

78 irreducible representations

dim1112222222
type++++++++++
imageC1C2C2S3D4D6D9D12D18D36
kernelC426D9C4×C36C2×D36C4×C12C36C2×C12C42C12C2×C4C4
# reps116163312936

Matrix representation of C426D9 in GL6(𝔽37)

27320000
5320000
001000
000100
00002617
0000206
,
5100000
27320000
0015300
00112200
000010
000001
,
3600000
110000
0036000
0010100
000001
000010

G:=sub<GL(6,GF(37))| [27,5,0,0,0,0,32,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,26,20,0,0,0,0,17,6],[5,27,0,0,0,0,10,32,0,0,0,0,0,0,15,11,0,0,0,0,3,22,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,1,0,0,0,0,0,1,0,0,0,0,0,0,36,10,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C426D9 in GAP, Magma, Sage, TeX

C_4^2\rtimes_6D_9
% in TeX

G:=Group("C4^2:6D9");
// GroupNames label

G:=SmallGroup(288,84);
// by ID

G=gap.SmallGroup(288,84);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,254,58,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=b^4=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽